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Abstract

We studv data traffic on distributed shared memo D" machines and conclude that data

placement and grouping improve performance of scientific codes. We present several

methods which user can employ to improve data traffic in his code. We report on imple-

mentation of a tool which detects the code fragments causing data congestions and

advises user on improvements of data routing in these fragments. The capabilities of the

tool include: deduction of data alignment and affinity from the source code; detection of

the code constructs having abnormally high cache or TLB misses; generation of data

placement constructs. We demonstrate the capabilities of the tool on experiments with

NAS parallel benchmarks and with a simple CFD application ARC3D.

1. Introduction

Distributed shared memorv (DSM) machines are proving to be an efficient solution

for computationally intensive scientific calculations because of ease of writing parallel

programs and gaining speedup of the parallel code. OSM machines allow easy to use par-

allel programming paradigms based on OpenMP and on Java Threads. The main advan-

tage of shared memorv architecture is providing user with a global address space for all

threads executed across the machine. The threads have logically equal access to the appli-

cation data regardless of the physical mapping of the memory allocated to the applica-

tion. DSM machines employ at least two levels of cache memory and an additional

hardware such as TLB (translation-look-aside buffer) and Directories to track the location

of data been processed, to keep the data in a coherent state, and to hide the latency of

memory access due to the physical distribution of memory.

While DSM hardware and its operating system liberate user from the duty of the ex-

plicit data and computation location management, a poor data distribution can result in

significant increase of data traffic, which causes data congestions and loss of perfor-

mance. Some well known data congestion problems include: excessive data cache misses,

false sharing and excessive TLB misses. The methods of improving the data traffic on dis-

tributed memory (DM) machines involve nests reordering, data partitioning, computa-

tion and communication overlapping [16][25][26][27]. An engineering of the high

performance of parallel code on DSM machines, as on DM machines, requires assignment

of well balanced load to each thread and organization of congestion free data traffic [24].

The methods for improving data traffic include data placement, data grouping, and data

transposition. Improvements in data localitv usually are translated into increase in per-
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formance of serial code and into better scalability of parallel code both on DM and on

DSM architectures. In some cases the compilers are able to improve data traffic by data

prefetching, by overlapping the computations with memory access, and improve cache

performance bv nest tiling.

In the first'part of this paper we demonstrate effects of improving data traffic on per-

formance of the applications running on DSM machines. We show that the data traffic de-

pends on two components: the data-to-computations affinity and the data-to-data

affinity. The affinity relations can be obtained as a result of program analysis and than can

be used by a tool for data traffic improvements on DSM machines. We illustrate our find-

ings on running on array-oriented scientific codes written in FORTRAN and running on

SGI Origin2000. The codes are designed to solve partial differential equations on struc-

tured grids and usually on each iteration perform few operations per datum and, as a re-

sult, have a tendency to b_ memory bound.

In the second part of this paper we show that many data traffic problems can be iden-

tified in the code automaticallv and the user can be advised by a tool on possible data con-

gestions and ways to resolve them. The tool extends the functionality of ADAPT

(Automatic Data Alignment and Placement Tool) [9] which analyzes data affinity and

generates HPF stile directives. The tool also employs information provided by CAPO [111

which annotates code with OpenMP directives.

Our experiments are accomplished on SGI Origin 2000 24 processor machine under

IRIX64 6.5 and MIPSpro f77 compiler, version 7.3.1.1m. We use two codes to illustrate

data traffic effects in DSM machine. The first code is SP of NAS Parallel Benchmark set [4]

(both, FORTRAN serial and OpenMP versions), which uses an ADI method to solve the

Navier-Stokes equation on a cubical grid [23]. The second code is a simple nest for com-

putation of an explicit stencil operator q=Ku, where u and q are two three-dimensional ar-

rays of the dimensions nx, ny and nz, and K is a 13 point star operator with constant

coefficients, see Figure 1. Finally, we demonstrate the capabilities of the tool on experi-

ments with NAS parallel benchmarks and with a simple CFD application ARC3D.

2. Data-to-Computations Affinity

In order to reduce processor-memory performance gap [15] a number of data traffic

control techniques have been developed including vectorization, pipelineing, prefetch-

ing, tiling and blocking [3][16][17][25][26]. An appropriate application of these techniques

is based on analvsis of data-to-computations and data-to-data affinity. Informally a da-

tum is affine to an instruction if it is used/produced by the instruction (see Section 4 for
a formal definition).

We work with parallel programs where the thread number is known for each instruc-

tion. This can be an OpenMP program with directives specifying the thread which will be

processing each instruction, an MPI or HPF program where a symbolic number of the

processor executing each instruction is known. For each datum we define the usability

vector be a vector with component i equal to the number of instructions affine to the da-

tum executed bv the thread i. The index of the maximal component of the usability vector

can be used to specify the thread affine to the datum. For good data locality the data affine

"In OpenMP programs with dynamic thread scheduling the actual thread executing instruction can vary. So here we
assume a static _heduling of OpenMP programs.



to a particular thread should be grouped together and pages having the highest affinity

to a particular thread should be allocated in the memory of the processor where the

thread is running. In the computations involving arrays the user can control both array

shape (by padding dimensions) and placement of individual pages allocated for array (by

controlling the page placement policy and the page size). The page placement depends

on the application placement policy and on the thread which writes to the page first, [24].

For illustration of data-to-computations affinity let us consider computations of an

explicit operator q=Ku, Figure 1. The profile of the memory access for kj i, kij and j ik

nest ordering obtained with SGI dpro f tool is shown on Figure 2.The reason for high

memorv access interference in the j ik ordering is that each thread uses few data from

each memory page allocated to the arrays. The large stride in the memory access also

causes a significant number of TLB misses. A technique for alleviating this problem was

developed in HPF compilation systems [3] and called data transposition. It is based on in-

troduction of a separate arrav with dimensions i and k transposed, copying the original

data into the transposed array, performing computations with the transposed array, and

copying results back to the original array. The transposition dramatically reduces the in-

terference of threads, see Figure 3. The transposition method is relatively expensive and

improves performance only if the interference volume is large enough to amortize the
transposition cost.

An interference of the threads reading data from the same page can cause a bottle-

neck in the channel of the memory hosting the page. If two or more threads running on

different processors write data so closely located in the main memory that thev are

mapped into the same line of the secondary or primary cache then the performance loss

even more significant. In this case each write results in an invalidation of the cache line in

all threads accessing it, causing effect known as false sharing.

Tables 1 and 2 show the performance, the primary data cache (PDC) misses, the sec-

ondary data cache (SDC) misses and the TLB misses in the nest. The nest with kj i loop

ordering has the best performance. The performance can be further improved by alloca-

tion of the pages affine to each processor in the memory local to it by touching the pages

in an appropriate order. The last lines in both tables show performance of the code with

appropriately parallelized data initialization nest. The page placement can be profiled

with another SGI tool called dlook. It shows that as a result of initial data placement the

pages allocated to the arrays are distributed across the processors.

A reduction in TLB misses can be also achieved by increasing of the page size. If the

page size, however, is too big then an array can be concentrated on few processors creat-

ing a bottleneck for accessing it by threads executed on other processors. The preferable

page size depends on the number of processors involved and for given array dimensions

it should be chosen as the total array size divided by the number of threads accessing it.

For example, using page size 1 MB and 256K (instead of default 64K) improves perfor-

mance of SP benchmark, class A, bv 10% on 2 and 4 processors respectively (typical array
size in this benchmark is 643 of 8 byte words=2MB).

3. Data-to-Data Affinity

Two datums are affine if both are used at the same instruction executed during the

program run. A grouping of affine data items together and organizing groups into a con-



tinuos stream often improves the program performance by hiding the memory latency.
In general the affinity relation is amany-to-many relation and, asa result, there aremany
ways to group affine data items. In [7] it is shown that the possibility of grouping affine
array elements is significantly affected by the geometry of the self interference lattice of
the array. The self interference lattice canbedefined asa lattice of array elements mapped
into the sameword in the cache[7], or, equivalently, asa setof solutions of the CacheMiss
Equation [10].

We illustrate the grouping of affine elements and the memory accessinterference on
example of computation of a stencil operator q = Ku, Figure 1. Let us choose arbitrary time

stamps ti, i=1 .... ,n, with t 1 and t_t respectively been start time and end time of the compu-

tation. Let Qi be the set of q elements computed at time interval [ti, ti+l] , i=l ..... n-l, and let

tli=aff(Qi) be the set of u elements affine with the elements of Qi, see Figure 4. All ele-

ments of U i are accessed.during computation of Qi. The number of cache misses during

computation of Qj can be reduced if we would be able to keep elements of all Uq, i<j in

the cache (here U, = U, ,n U, ). If_however, the number of elements in all Uq (i<j) exceeds

the cache size, then at least mi= 2., i i<j ] uq ] -s (here S is the cache size) must be dropped

from the cache and reloaded later resulting in mj misses (this type of misses called replace-
ment miss [10]). On the other hand, if each U i fits into the cache then the total number of

replacement misses will be at most _,i_j ] l_[ii ] .

The following non rater&fence conditions is necessary for computations of Qi without

replacement misses be possible (below A is the cache associativity number)'

• no q-u cross interference: for any element x of Qi no more than A-1 elements of

all(x) can be mapped into the same cache line as x

• no u self interference (and, symmetrically, no q self interference): for any element

x of Qi no more than ,4 elements of aff(x) can be mapped into the same cache line

Both self and cross interference cause the effect known as cache trashing [24]. It re-

sults in a significant increase of cache invalidation and cache misses. On the other hand,

if neither of interferences occurs then we can construct a covering of the iteration space

with interference free sets in the following way. We pick an element ql, choose Q1 to be

an interference free neighborhood of ql • Let L={qi } be interference lattice of q, that is the

set of elements of q mapped onto the same word in cache as ql and Qi be a translation of

Q1 by a vector of qi-ql. If {Qi} covers all elements of q then we have a good tiling of the

iteration space. Otherwise we choose an array element not covered by {Qi} and repeat the
tiling operation.

The interference free neighborhood can be chosen in a number of ways. Three inter-

ference free sets are shown in Figure 5. In [7] it is shown that a fundamental parallelepi-

ped of a reduced basis of the self interference lattice in many cases provides an optimum
covering. Figure 6 shows cache misses for two methods for calculation of the second or-

der stencil: 1) compiler optimized (the compiler flags are described below) and 2) tiled

with a successive minima parallelepiped [5].

To illustrate the primary and secondary data cache effects in DSM machine we con-

sider a calculation of 4D array !hs in lhsx, lhsy and lhsz (see nest 1 of SP, serial ver-

sion). For computation of the values of lhs on a k-plane in lhsz the values of two arrays

"We say that two array elements at a distance 1 if thev are in the affinitv relation. A neighborhood of an element qz is a

set of all elements of [I at some distance d from qI.



on the planes k-l, k, k+l are used. The computations are optimized in such a way that the

intermediate values along each k-line are computed and stored in temporary 1D arrays.

For the computations of the final values of lhs the two temporary arrays are used, see

lhsz nest in Figure 7. The appropriate nests in lhsx and lhsy are organized similarly

having k index interchanged with i and j respectively.

We have compiled code with MIPSpro f77 compiler, using the flag -03 -NGO:

prefetch=0. The last flag prevents the compiler from doing an aggressive prefetching

to reduce time processor stalls waiting for data. We profiled these nests for class A

(nx=ny=nz=64) using a hardware counters profiling library*. In the benchmark the arrays

were padded to make the first and second dimensions of all arrays equal to 65. The mea-

surements presented in the columns 2 through 4 of Table 3 show that the PDC misses are

about a factor 2.6 larger for lhsy and lhsz than for lhsx. This is a consequence of little
reuse of cache lines loaded with each cache miss. The total number of referenced data in

the nest is about 14 MB (7 arrays of the size 643 words or 2 MB each). The total size of the

secondary cache is 4 MB and each cache load loads whole line of 128 B. So, in each case it

corresponds to about 22"105"128 B - 280 MB of loaded (or written back) data.

A significant increase in the number of TLB misses for lhs z is well in line with the

fact that this nest accesses the data dispersed across many memory pages (this effect sim-

ilar to the large number of TLB misses in j ik line of Tables 1 and 2). The increase in the

execution time for the lhsy relative to lhsx is accounted for the larger number of PDC
misses. For lhsz increase in the execution time is accounted mostly for the TLB misses.

In our optimization we removed temporary arrays by sacrificing calculations of com-

mon expressions with the SimpleFunction (,. Then we removed the two internal loops

and performed calculation in k j i order.This transformation increases the number of ex-

ecuted floating point instructions, however, it allows to decrease the number of TLB and

PDC misses. The resulting nest lhs z_r is shown in Figure 7. The measured events for the

optimized nests (the last 2 columns of Table 3) show as decrease in the PDC misses and

TLB as an improvement in the execution time. The number of PDC misses in lhsz r is

still bigger than the number of PDC misses in lhsx which can be explained by incomplete

reuse of data from k-1 and k+l planes. The reduction of the execution time in spite of in-

creasing of the number of the floating point instructions in lhsy r and lhs z r indicates

that the original nests are memory rather than CPU bound.

4. Automation of Data Traffic Control

The methods of data grouping, placement and localization described in the previous

sections can be formalized and implemented in an automatic tool assisting the user in im-

provement of data traffic in her application. We implemented these methods in a tool

which is able to analyze the code and detect constructs which potentially can cause data

congestions and loss of application performance. We used ADAPT (Automatic Data

Alignment and Placement Tool) [9], as a basis for the implementation. ADAPT uses CAP-

Tools [12][13] generated application data base, extracts data affinity, deduces data distri-

butions and produces a code annotated with the HPF [17] directives. In order to

"The hardware counters library allows to compute a histogram of 32 hardware events on SG[ machines using R10000

and R12000 processors. The lil_rarv uses ioctl system call provided bv IRIX64 6.5 to access the counters. The library

was developed bv Amy Fomal.



incorporate the parallelization information ADAPT takes additional input from the

CAPO tool which annotates code with OpenMP directives [11]. The input consists of a list

of parallelized loops augmented with a lists of private/shared variables for the loops. Our

extensions to ADAPT includes the following functionality:

• detection of application sources -> initial data placements

• detection of high number of TLB misses -> loop interchange/array transposition

• detection of self and cross interference in loop nests -> array padding and offsets

• generation of interference free tiles

These features of ADAPT are based on analyzing the data-to-computations affinity

and the data-to-data affinity. The case when affinity can be explicitly represented by af-

fine mappings was considered in [20]. In many codes, however, the mappings are non-

linear or are many-to-many mappings and more general technique based on calculation

of affinitv relations should be applied to such codes.

Data-to-computations affinity. We represent program by a bipartite graph called pro-

gram affinity graph. Let C be the set of instructions of a program P, i.e. a set of program

statements executed during the program run, and let D be the program data, i.e. the set

of memorv locations referenced during the program run. We say a memory location d (a

datum) is affine to an instruction c if the value at address d is either operand or result of

c. The program affinity graph has C and D as the vertices of the parts and an arc connect-

ing each instruction with data affine to it. The direction of an arc connecting d and c is to-

ward c or away from c depending on whether d is operand or result of c (it is possible that

several arcs connect a datum and an instruction). Many program properties can be ex-

pressed in terms of its affinity graph. For example, an instruction c2 depends on an in-

struction c 1 if there is a direct path from c 1 to c2. Otherwise, if c 1 and c2 correspond to the

program statements located in the same basic block [1], then c 7 and c2 are independent

and can be executed in any order.

It is unpractical to use the full affinity graph for calculation of the usability vector (see

Section 2) since the size of the graph (order of the number instructions executed by a pro-

gram) usually is too big. The analysis of the graph can be simplified by indexing the in-

structions belonging to the same nest and the memory locations belonging to the same

array. In this case the arcs connecting data and instructions can be expressed as a pair of

expressions ( z ; ±dx ( Z ) ) where z is a vector loop index and ±dx(I) is a memorf, address

of an array element referenced at iteration 3, see Figure 7. In most of the cases in our ap-

plication domain (Partial Differential Equations on structured grids) the index function is

linear function of z with symbolic coefficients known at compile time. The are few nests

in our applications where this is not a case. These nests include the core of the FFT algo-

rithm where the ±dx(i,j,k)= i+j*2 k for kj ± loop nest; nests working with multiple grids

where ±dx function is read from a file; nests working with specially enumerated grid

points use ±d× function stored in a precomputed array. The tool indicates the nests with

nonlinear access functions without any further analysis of the nests. In most nests with

the linear access function the coefficients of the matrix representing the ±dx function are

elements of the set {-1,0,1 }, with an exclusion are the multigrid methods where the coeffi-

cients are multiple of 2.

Some properties of the program can be deduced using only symbolic information on

the coefficients of ±cL_: function (see the thread noninterference condition below) others

require knowledge of the actual numerical values of the coefficients (see the subsection



on generation of interference free tiles). If the property of the program can be expressed

in a symbolic form but can't be verified without knowing the numerical values of the co-

efficients the tool inserts some performance warning constructs in the code and the user

obtains the warning in runtime.

Data-to-data affinity relation. For a pair of arrays used in the same loop nest statement,

we define the affinity relation as a correspondence between array elements referred with

the same value of the loop index. The affinity relation can be represented as a list of pairs*:

do I from PI

q(idxq(I))=u(idxu(I) )

end do

c Aff(q,u)={(iclxq(I);idxu(I)), I from PI}

The affinity relation can b_¢ deduced for each pair of arrays in each nest statement. A con-

trol dependence results in affinity relations between the arrays involved in the control

statement and all arravs in each basic block immediately dominated by the statement. The

most common case we observe in our applications is one-to-few affinity relations be-

tween arrays resulted from difference operators on structured discretization grids. These

relations can be approximated bv a stencil (i.e. bv a set of vectors with constant elements)

and we call them stencil relations [9].

The chain rule allows to deduce the affinity for arrays used in different statements of
the same nest:

do I from El

u (id_xul (I)) =s(idxs (I))

q(i,ixq(I) )=u(idxu2 (I))

end do

c Aff (q, s) = { (idxq(I) ;idxs (J)) ,

c J=max{j : j<=I,idxul(j):idxu2(I) }}

where the max operation and inequality {j<=I} are performed in the lexicographical order

imposed by the nest indices. For statements with different nesting the chain rule is similar,

see [9]. The chain rule allows to construct an affinity relation along each directed path in

the nest data flow graph passing only through privatizable variables. The union of these

relations over all directed paths to q from u forms the nest affinity relation between q and

u. The relation lists all elements of u used for computation of the element of q and can con-

sidered as one-to-manv mapping.

Checking Thread Noninterference. This condition can be formulated as nonoverlapping

"We use multidimensional indices, fl.mctions and domains in this section. It makes the presentation more compact

and the analogy bet_veen loops and nests more transparent. For example, instead of
do i: 1, nx

do j:l,ny{i)

do k=l.nz(i,j)

q(id_xql(i,j,k) ,idxq2(i,j.k) ,idxq3(i,j,k) )=

u(idxul(i, j,k) , idxu2(i,j,k) ,idxu3(i, j,k) )

end do

end do

end do

we write

do I from Pi

q(i_xq(i] _=u(idxu(I))
end do
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of the address spaces accessed by different threads: if a thread accesses array elements at

addresses A and B then no other thread accesses an array element at address C, if

A<=C<=B. In particular, it means that the interference shown on the bottom (j ik) insert

in Figure 2, does not happen. If the noninterference condition is satisfied then the memo-

rv accessed by a thread can be placed at the memory of the processor running the thread,

improving the data locality.

Consider a single nest of a parallel program and assume that the parallelized loop is

known. If an array access function represented as a linear function of the nest indices i,j,k
with svmbolic coefficients a,b,c:

addrp(i, j, k) = ai + bj + ck + cwp

where, p is the thread number, w is the number of iterations per thread, O<=i<nx, O<=j<ny,

O<=k<w, O<=p<NUM_THREADS. In this case the necessary and sufficient condition for
thread noninterference ca-n be formulated as

c > a(nx- 1) + b(ny- 1)

If there are multiple arrav access functions per array then we check the noninterfer-
ence condition for each function. This, however, is not sufficient for thread noninterfer-

ence. For example, in stencil type computations the access functions differ by a constant

term (independent on i,j,k) and cause small thread interference, see interference between

consecutive threads in the first two inserts of Figure 2.

Detection qfHigh TLB misses. Table 1 indicates that the large number of TLB misses re-

sults from large memory stride due to iterations of the innermest loop of the nest. Our
TLB miss test checks two conditions:

• the number of iterations of the innermost nest exceeds the TLB_SIZE

• the distance between the first an last address accessed in the innermost loop
exceeds the PAGE_SIZE*TLB_SIZE

If both conditions can be proved to be true then the user gets a warning about high TLB

misses in the nest. Otherwise, if both conditions can't be proved to be false then the tool
inserts a runtime check in the code.

Checking Cache Unfriendly Access Patterns. In general, cache friendly computations in-

volve good temporal and spacial locality [15] and can not be expressed in simple terms

[10]. However, some necessary conditions for cache friendly computations can be formu-

lated and checked. The first condition is simple: the coefficient at the innermost loop in-
dex is 1. Otherwise, nonunit stride in memory access can cause underutilization of data

loaded into the cache. The other two conditions, self and cross array interference are for-
mulated below.

Detection of Se(f Interference. If the self affinity relation can be expressed in the form

stencil vectors the tool represents the addresses of the corresponding array elements as a

polylinear functions of arrav sizes and the index coefficients. Then for each pair of the

stencil vectors after common terms elimination in the addresses differences it generates a

set of constraints for the array dimensions in the form nx*ny != k'S, where nx, ny are the

array sizes, S is a cache size and k is a small integer. If nx or ny is not known at compile

time a test for a satisfiability* of these inequalities is inserted in a program and in run time

"Note that if array sizes are known the satisfiabilitv can be checked in liner time on the system size.



user gets a warning about possible self interference.

Detection of Cross Interference. The cross interference between two arrays happens

when affine elements of the two arrays are mapped to the same cache location. Checking

of the cross interference is similar to the checking of self interference with a difference that

it involves the inter array offset and dimensions of both arrays.The cross interference con-

straints are represented by a polylinear equality as self interference:

nxa*nya+off_a_b+nxb*nyb!=k*S, k=1,2,3.

Detection of the Data Sources and the Initial Data Placement. On some DSM machines

memory pages are allocated on the processor which touches the page first, hence for ini-

tial data placement in an application we detect the constructs where data are initialized.

We found that all data initialization constructs in our codes have one of following types:

• reading data from a file

• receiving data from another process

• initialization of arrays from another array

• initialization of an array with an intrinsic function (such as random number gen-
erator)

These constructs are easilv detectable by our tool and a data placement directive (in

the form of HPF ALIGN, DISTRIBUTE directives) is issued before each construct.

Generation _he Inter&rence Free Tiles. For generation of the interference free tiles we

construct a successive minima parallelepiped, see Figure 5. In general case the parallel-

epiped sizes are discrete functions of the arrav dimensions and can be computed only for

the arrays with known dimensions. Ottr algorithm finds the successive minima by a

blowing a cube with the center in the origin and freezing a face as soon as it attains a lat-

tice point. The parallelepiped is final if each its face contains a lattice point. An improve-

ment in the cache misses by tiling of a nest of a second order explicit operator on a 3D grid

with the successive minima parallelepipeds is shown in Figure 6.

5. Experimental results

We applied the tool to SP, BT and LU of NAS Parallel Benchmarks [4] (optimized

OpenMP version PBN-O) and to an aerodynamic code ARC3D [8]. The tool was able to

generate a file containing advising information on:

• nests for initial data placements

• nests with nonunit strides and possible loop interchange

• nests with big strides and possible data transpositions
• nests with self or cross interference

• tiles for improving cache performance

We analyzed the advising file for SP Benchmark and inserted the appropriate chang-

es into code by hand. The performance results are shown in Figure 8. The tool detected 4
nests where data were initialized. The nests with nonunit strides were detected in rhs,

zsolve, and exact rhs. A nest with a big stride was detected in zsolve. No self inter-

ference was detected (the padding of the second and third dimensions in the benchmark

was sufficient). The cross interference condition was presented in the form that the array

offsets can not be equal to a multiple of cache size plus a stencil vector offset (the address

of the array element represented by the vector). Two types of tiles were generated: (8,2,8)

for the nests working with (65,65,64) arrays; and (5,8,2,8) for nests working with

(5,65,65,64) arrays.

9



The initialization nests were properly parallelized in the original program, so no ad-

ditional data placements were needed. In Figure 8 we showed the effect of a concentra-

tion of the arrays in the memory of a single node by introducing a nest for touching data

by the master thread (totoal no placement curve). We interchanged the loops in the nest

for the computation of rhs z as the tool advised. Also, following the tool advise, we made

a transposition in the zsolve. The exact rhs was outside of the timed code section so

we did not do any changes in it. The impact of the data traffic optimization on the code

performance is shown in Figure 8. The improvement was about 20% for both rhs z and

zsolve and total improvement for the application performance was about 10% on 16

processors.

In the final version of the paper we will present similar data on the other 3 codes: BT,
LU and ARC3D.

6. Conclusions and Related Work

We showed on examples that on DSM machines improvements in data traffic result

in improvement of the application performance. We demonstrated a few methods for im-

proving data traffic: data placement, data transposition, reduction of thread interference,
and reduction of array self and cross interference in cache. The methods can be formal-

ized on the basis of analysis of data-to-computation and data-to-data affinity and can be

implemented in a toot advising a user on data traffic improvements. We implemented the

methods in as extensions to ADAPT [9].

Data distribution and data locality are fields of intensive research in the last decade.

These two aspects of data locality were considered separately: HPF stile of data distribu-

tions for distributed memorv machines [2][3][9][16][17][18][19][20][21][22] and the spatial

and temporal data locality {or improving for improving performance of cache based sin-

gle processor machines [6][7][10][15][25][26][27]. The DSM machines employing ccNU-

MA architecture exhibit synergetic effects of data distributions and data localization [24].

These effects can range from a superlinear speedup for applications where both aspects

of data placement are handled well to a significant slow down if data sharing is handled

poor.
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do k: !, nz

do ] =I, ny

do i= i, nx

q(i,j,k)

end do

end do

end do

: u(i,j_k)

+ c!'u(i-2,j,k)+c2*u(i-l,j,k)+c3*u(i+l,j,k)+c4*u(i+2,j,k}

+ c5_u(i,j-2,k)+c6*u(i,j-l,k)+c7*u(i,j+l,k)+c8*u(i,j+2,k)

+ c9*u(i,j,k-2)+clO*u(i,j,k-l)+cll*u(i,j,k+l)+cl2*u(i,j,k_2)

FIGURE 1. The kj i nest ordering of the second order explicit operator q:Ku.
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FIGURE 2. Histograms of the memory access addresses obtained with SGI dpro£ tool

(OpenMP program with 4 threads).
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FIGURE 3. Removing memory access interference with transposition. The significant

nose in the histograms is a result of sampling of memory addresses and of many

fractional pages affine to the threads.
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FIGURE 4. A partition of the elements of array q into 3 sets Qi each computed within

time interval [ti,ti+l], i=1,2,3. Ui=aff(Qi) and Llii is the intersection of LIi and Uj, i,j=1,2,3
(U12 3 is contained in all Ui).

FIGURE 5. Array self interference lattice L. Highlighted are three interference free

polygons: a fundamental parallelepiped of the lattice, the Voronoi hexagon, and a

rectangular built on the vectors of the successive minima of the lattice (1/2)L, see [5].

Each polygon can be used for tiling entire grid.
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FIGURE 6. Comparison of cache misses for the second order stencil operator as a

function of the first dimension (ny=97, nz=99). The first graph shows the number of

cache misses for compiler optimized nest. The second graph is obtained for tiling with

successive minima parallelepiped.
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do j=l,ny

do i=l, nx

do k=l, nz

cv (k) =

rhon (k )

end do

do k=l,nz

lhs (i, j

lhs (i, j

lhs (i, j

lhs (i, j

lhs (i, j

end do

end do --

end do

ws (i, j, k)

= SimpleFunction(rho_i (i, j ,k) )

k,l

k,2

k,3

k,4

k,5

= 0.0d0

= - dttx2 * cv(k-l) - dttxl *

= 1.0d0 + c2dttxl * rhon(k)

= dttx2 * cv(k+l) - dttxl *

= 0.0d0

lhsz

rhon(k-l)

rhon(k+l)

(j,i,k;lhs(i,j

(j,i,k;lhs(i,_

(j,i,k;lhs(i,_

(j,i,k;lhs(i,j

(j,i,k;ihs(i,_

k,l

k,2

k,3

k,4)

k,5)

ws(i,j,k-l),rho_i(i,j,k-l))

rho_i(i,j,k))

ws(i,j,k+i),rho i(i,j,k+!))

lhsz_aff

do k:l,nz

do j=l,ny

do i=l,nx

lhs(i j

lhs(i j

lhs(i j

lhs(i j

lhs(i j

end do

end do

end do

.< 1

k 2

k 3

k 4

k 5

lhsz r

= 0.0d0

= -dttz2*ws(i,j,k-l)

-dttzl*Simp!eFunction(rho_i(i,j,k-l))

= 1.0 ÷ c2dttzl*SimpleFunction(rho_i(i,j,k)

= dttz2*ws(i,j,k+l)

-dttzl*SimpleFunction(rho i(i,j,k+l))

= 0.0d0

(k,j,i;lhs(i,j,k,l))

(k,j,i;lhs(i,j,k,2),ws(i,j,k-l),rho_i(i,j,k-l))

(k,j,i;lhs(i,j,k,3),rho_i(i,j,k))

(k,j,i;lhs(i,],k,4),ws(i,j,k+l),rho_i(i,j,k+l))

(k,j,i;lhs(i,j,k,5))

lhsz_r_aff

FIGURE 7. A nest transformation to reduce TLB misses and PDC misses. The affinity

relation lhs z aff for nonprivatizable arrays of the lhs z suggests a large stride in
memory accesses and little reuse of data in cache, lhs r aff has a reverse index

mapping as evidence of a good memory access pattern. The index of the parallelized

loop is shown in bold.
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FIGURE 8. The impact of data traffic optimization on the execution time of OpenMP

version of NAS Parallel Benchmark SP class A [4]. The top curve total no placement

shows the effect of a concentration of arrays in a single node memory. The dashed curves

show performance of the original code, and solid curves show performance of the

optimized code.
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TABLE1. Profiling PDC, SDC, and TLB misses for the second order stencil
computations with SGI hardware counters. Data are presented for the master thread,

time is given in microseconds. The page size=16k.

nest type

[KJI

KIJ

JIK

JIK+ transpose

KJI + data placement

I thread

TIME PDC SDC TLB

124 1219645 106130 569

162 4760811 106886 552

631 2478688 104002 1648271

333 __67223 111342 703828
a.---

124 1219675 106130 554

TIME

30

39

167

91

25

4 threads

PDC SDC TLB

304964 758 145

1190243 1214

639880 4471

159

442474

327166 19836 181840

304960 916 142

TABLE 2. Profiling PDC, SDC, and TLB misses for the second order stencil

computations with SGI hardware counters. Data are presented for the master thread,

time is given in microseconds. The page size=lM.

nest type TIME

KJI" 147

KIJ 183

JIK 175

JIK+ transpose 145

KJI + data placement '145

1 thread

PDC SDC

1304209 112001

4800928 112034

4771958 101661

[ 467570 1{2348

1304479 111977

TLB !TIME30

7 39

4 64

0 45

5 26

4 threads

PDC SDC TLB

305020 819 0

1190798 1283 1

499695 4748 14

310805 19822 24

305032 804 0

TABLE 3. Measurements of hardware events in the first nest of lhsx, lhsy, and lhsz.

The second two columns show measurements for the rearranged nests.

Counter name \ nest Ihsx lhsy Ihsz Ihsy_r Ihsz_r

Graduated FP instructions 5842922 5842916 5842928 12869754 12869748

TLB misses 1157 1274 3487850 1169 2261

PDC misses 876941 2172573 2183645 884053 1251526

SDC misses 216528 221182 221438 221234 221952

Execution time (ms) 15t 222 1372 175 191
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